Homogenization of stable-like operators

Xin Chen

Shanghai Jiao Tong University

with Zhen-Qing Chen, Takashi Kumagai and Jian Wang

15th Workshop on Markov Processes and Related Topics

July 11–15 2019 Jilin University

² [Symmetric setting: ergodic medium](#page-20-0)

- [Framework: Dirichlet form](#page-20-0)
- [Main results](#page-34-0)

³ [Non-symmetric case: periodic coefficient](#page-43-0)

- [Framework: operator](#page-43-0)
- [Main result](#page-54-0)

(1)

$$
L = \sum_{1 \le i,j \le d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).
$$

(2) Oscillating coefficients

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(3) Homogenization

$$
L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,
$$

where \bar{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function (defined on \mathbb{T}^d).

(ii) Stochastic homogenization (in a stationary, ergodic random media): $a_{ij}(x; \omega) = a_{ij}(\tau_x \omega)$, where $\{\tau_x\}_{x \in \mathbb{R}^d}$ is a measurable group of transformations defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that ${\tau_x}_{x \in \mathbb{R}^d}$ is stationary and ergodic.
 Sin Chen (SITU) QQ

(1)

$$
L = \sum_{1 \le i,j \le d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).
$$

(2) Oscillating coefficients

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(3) Homogenization

$$
L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,
$$

where \bar{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function (defined on \mathbb{T}^d).

(ii) Stochastic homogenization (in a stationary, ergodic random media): $a_{ij}(x; \omega) = a_{ij}(\tau_x \omega)$, where $\{\tau_x\}_{x \in \mathbb{R}^d}$ is a measurable group of transformations defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that ${\tau_x}_{x \in \mathbb{R}^d}$ is stationary and ergodic.
 Sin Chen (SITU) QQ

(1)

$$
L = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).
$$

(2) Oscillating coefficients

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(3) Homogenization

$$
L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,
$$

where \bar{L} is with constant coefficient.

(i) Periodic homogenization: $a_{ij}(x)$ is a periodic function (defined on \mathbb{T}^d).

(ii) Stochastic homogenization (in a stationary, ergodic random media): $a_{ij}(x;\omega) = a_{ij}(\tau_x\omega)$, where $\{\tau_x\}_{x \in \mathbb{R}^d}$ is a measurable group of transformations defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that ${\tau_x}_{x \in \mathbb{R}^d}$ is stationary and ergodic.
 Sin Chen (SITU) QQ [Homogenization of stable-like operators](#page-0-0) July 11-15, 2019; JLU 3/38

(1)

$$
L = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).
$$

(2) Oscillating coefficients

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(3) Homogenization

$$
L^{\varepsilon} \to \bar{L}, \quad \varepsilon \to 0,
$$

where \bar{L} is with constant coefficient.

- (i) Periodic homogenization: $a_{ij}(x)$ is a periodic function (defined on \mathbb{T}^d).
- (ii) Stochastic homogenization (in a stationary, ergodic random media): $a_{ii}(x;\omega) = a_{ii}(\tau_x \omega)$, where $\{\tau_x\}_{x \in \mathbb{R}^d}$ is a measurable group of transformations defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that ${\tau_x}_{x\in\mathbb{R}^d}$ is stationary and ergodic. $2Q$ Xin Chen (SJTU) [Homogenization of stable-like operators](#page-0-0) July 11-15, 2019; JLU 3/38

(1)

(2)

 $L = \sum$ $1 \leq i, j \leq d$ ∂ ∂*xⁱ* $\int a_{ij}(x) \frac{\partial}{\partial x}$ ∂*x^j* $\big).$

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(i) If $(X_t)_{t\geqslant0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t\geqslant0} \sim L^{\varepsilon}$. (Diffusive scaling).

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.
$$

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx
$$

э

 QQ

イロト (何) イヨト (ヨ)

(1)

(2)

 $L = \sum$ $1 \leq i, j \leq d$ ∂ ∂*xⁱ* $\int a_{ij}(x) \frac{\partial}{\partial x}$ ∂*x^j* $\big).$

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(i) If $(X_t)_{t\geqslant0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t\geqslant0} \sim L^{\varepsilon}$. (Diffusive scaling).

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.
$$

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx
$$

K ロ ▶ K 伊 ▶ K

 $2Q$

(1)

(2)

 $L = \sum$ $1 \leq i, j \leq d$ ∂ ∂*xⁱ* $\int a_{ij}(x) \frac{\partial}{\partial x}$ ∂*x^j* $\big).$

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(i) If $(X_t)_{t\geqslant0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t\geqslant0} \sim L^{\varepsilon}$. (Diffusive scaling). (ii)

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.
$$

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \leq i,j \leq d} \int a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.
$$

э

∢ ロ ▶ ∢ 伊 ▶ ∢

 QQ

(1)

(2)

 $L = \sum$ $1 \leq i, j \leq d$ ∂ ∂*xⁱ* $\int a_{ij}(x) \frac{\partial}{\partial x}$ ∂*x^j* $\big).$

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(i) If $(X_t)_{t\geqslant0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t\geqslant0} \sim L^{\varepsilon}$. (Diffusive scaling). (ii)

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \le i,j \le d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.
$$

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \le i,j \le d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.
$$

э

∢ ロ ▶ ∢ 伊 ▶ ∢

 QQ

(1)

(2)

 $L = \sum$ $1 \leq i, j \leq d$ ∂ ∂*xⁱ* $\int a_{ij}(x) \frac{\partial}{\partial x}$ ∂*x^j* $\big).$

$$
L^{\varepsilon} = \sum_{1 \leq i,j \leq d} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial}{\partial x_j} \right), \quad \varepsilon > 0.
$$

(i) If $(X_t)_{t\geqslant0} \sim L$, then $(\varepsilon X_{\varepsilon^{-2}t})_{t\geqslant0} \sim L^{\varepsilon}$. (Diffusive scaling). (ii)

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \le i,j \le d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} dx.
$$

$$
\mathcal{E}^{\varepsilon}(f,g) = \sum_{1 \le i,j \le d} \int a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial f(x)}{\partial x_i} \frac{\partial g(x)}{\partial x_j} e^{V(x/\varepsilon)} dx.
$$

э

∢ ロ ▶ ∢ 伊 ▶ ∢

 QQ

Known results for diffusive homogenization

- periodic environment [Bensoussan, Lions and Papanicolaou 1975], [Tatar 1976]
- ergodic environment [Kozlov 1979], [Papanicolaou and Varadhan 1979]

$$
L^{\varepsilon,\omega} \to \bar{L} = \sum_{1 \le i,j \le d} \bar{a}_{ij} \frac{\partial^2}{\partial x_i \partial x_j}, \quad \varepsilon \to 0, a.s.\omega \in \Omega
$$

where $\bar{a}_{ij} = \mathbb{E}[\sum_{1 \le k \le d} a_{ij}(0)(\delta_{kj} + \psi_j^k(0))], \psi_j^k(x; \omega) := \frac{\partial}{\partial x_k} \chi_j(x; \omega),$

$$
L\chi_j(x; \omega) = -\sum_{1 \le i \le d} \frac{\partial}{\partial x_i} a_{ij}(x; \omega).
$$

Existence of corrector: L^2 integrability of coefficients.

Question: Homogenization problem for stable-like operators

- (1) What kind of stable-like operator *L* we will consider?
- (2) How can we do the homogenization? What kind of scaling we will choose?
- (3) What expression of the limiting operator \bar{L} ?

Let $(X_t)_{t\geq0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

Symmetric setting:

$$
Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y) = c(y, x)$ for all $x, y \in \mathbb{R}^d$.

• Non-symmetric setting:

$$
Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz.
$$

What kind of homogenization: For any $\varepsilon > 0$ and $t > 0$, let $X_t^{(\varepsilon)}$ Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})$ converges to some $(\bar{X}_t)_{t\geq 0}$ as $\varepsilon \to 0$ and what is the expression for its infinitesimal generator. Ω

Let $(X_t)_{t\geq0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

Symmetric setting:

$$
Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y) = c(y, x)$ for all $x, y \in \mathbb{R}^d$.

Non-symmetric setting:

$$
Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz.
$$

What kind of homogenization: For any $\varepsilon > 0$ and $t > 0$, let $X_t^{(\varepsilon)}$ Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})$ converges to some $(\bar{X}_t)_{t\geq0}$ as $\varepsilon \to 0$ and what is the expression for its infinitesimal generator. Ω

Let $(X_t)_{t\geq0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

Symmetric setting:

$$
Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y) = c(y, x)$ for all $x, y \in \mathbb{R}^d$.

Non-symmetric setting:

$$
Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz.
$$

What kind of homogenization: For any $\varepsilon > 0$ and $t > 0$, let $X_t^{(\varepsilon)}$ $\epsilon_t^{(\varepsilon)}:=\varepsilon X_{\varepsilon^{-\alpha}t}.$ Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})$ converges to some $(\bar{X}_t)_{t>0}$ as $\varepsilon \to 0$ and what is the expression for its infinitesimal generator. Ω

Let $(X_t)_{t\geq0}$ be a α -stable-like process (not only α -stable Lévy process and, in general, not having the scaling property) with generator as follow

Symmetric setting:

$$
Lf(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y) = c(y, x)$ for all $x, y \in \mathbb{R}^d$.

Non-symmetric setting:

$$
Lf(x) = p.v. \int (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz.
$$

What kind of homogenization: For any $\varepsilon > 0$ and $t > 0$, let $X_t^{(\varepsilon)}$ $\epsilon_t^{(\varepsilon)} := \varepsilon X_{\varepsilon^{-\alpha}t}.$ Question: We will consider that, under some assumptions, $(X_t^{(\varepsilon)})$ $(t^{(\varepsilon)})_{t\geqslant 0}$ converges to some $(\bar{X}_t)_{t\geq 0}$ as $\varepsilon \to 0$ and what is the expression for its infinitesimal generator. つくい

Known results

- M. Tomisaki: Homogenization of cádlág processes, *J. Math. Soc. Japan*, 44 (1992), 281–305.
- M. Kassmann, A. Piatnitski and E. Zhizhina: Homogenization of Lévy-type operators with oscillating coefficients, to appear in *SIAM J. Math. Anal.*
- R.L. Schilling and T. Uemura: Homogenization of symmetric Lévy processes on \mathbb{R}^d , arXiv:1808.01667
- R.W. Schwab: Stochastic homogenization for some nonlinear integro-differential equations, *Comm. Partial Differential Equations*, 38 (2013), 171–198.
- R.W. Schwab: Periodic homogenization for nonlinear integro-differential equations, *SIAM J. Math. Anal.*, 42 (2010) 2652–2680.

つくい

◆ロト ◆母ト ◆ヨト ◆ヨ

Known results

- M. Tomisaki: Homogenization of cádlág processes, *J. Math. Soc. Japan*, 44 (1992), 281–305.
- M. Kassmann, A. Piatnitski and E. Zhizhina: Homogenization of Lévy-type operators with oscillating coefficients, to appear in *SIAM J. Math. Anal.*
- R.L. Schilling and T. Uemura: Homogenization of symmetric Lévy processes on \mathbb{R}^d , arXiv:1808.01667
- R.W. Schwab: Stochastic homogenization for some nonlinear integro-differential equations, *Comm. Partial Differential Equations*, 38 (2013), 171–198.
- R.W. Schwab: Periodic homogenization for nonlinear integro-differential equations, *SIAM J. Math. Anal.*, 42 (2010) 2652–2680.

つくい

◆ロト ◆母ト ◆ヨト ◆ヨ

- Z.Q. Chen, P. Kim and T. Kumagai: Discrete approximation of symmetric jump processes on metric measure spaces, *Proba. Theory Relat. Fields*, 155, 2013, 703–749.
- X. Chen, T. Kumagai and J. Wang: Random conductance models with stable-like jumps I: Quenched invariance principle, arXiv:1805.04344.
- X. Chen, T. Kumagai and J. Wang: Random conductance models with stable-like jumps: heat kernel estimates and Harnack inequalities, arXiv:1808.02178.
- J.Q. Duan, Q. Huang and R.M. Song: Homogenization of stable-like Feller processes, arXiv:1812.11624.

[Aim](#page-2-0)

² [Symmetric setting: ergodic medium](#page-20-0) • [Framework: Dirichlet form](#page-20-0)

• [Main results](#page-34-0)

³ [Non-symmetric case: periodic coefficient](#page-43-0)

- [Framework: operator](#page-43-0)
- • [Main result](#page-54-0)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a group of transformation ${\tau_x}_{x \in \mathbb{R}^d}$ such that

- $\mathbb{P}(\tau_x A) = \mathbb{P}(A)$ for all $A \in \mathcal{F}$ and $x \in \mathbb{R}^d$; (Stationary)
- If $A \in \mathcal{F}$ and $\tau_x A = A$ for all $x \in \mathbb{R}^d$, then $\mathbb{P}(A) \in \{0, 1\}$; (Ergodic)
- The function $(x, \omega) \mapsto \tau_x \omega$ is measurable; (Measurable)

Symmetric stable-like operator *L* in random medium

Let $(X_t^{\omega})_{t\geq 0}$ be a symmetric α -stable-like process with generator as follow

$$
L^{\omega}f(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y; \omega)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y; \omega) = c(y, x; \omega)$ for all $x, y \in \mathbb{R}^d$.

• Non-local Dirichlet form:

$$
\mathcal{E}^{\omega}(f,g) = -\int f(x)L^{\omega}g(x) dx
$$

= $\frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} dx dy$

on $L^2(\mathbb{R}^d; dx)$.

 \bullet

Symmetric stable-like operator *L* in random medium

Let $(X_t^{\omega})_{t\geq 0}$ be a symmetric α -stable-like process with generator as follow

$$
L^{\omega}f(x) = p.v. \int (f(y) - f(x)) \frac{c(x, y; \omega)}{|x - y|^{d + \alpha}} dy
$$

where $c(x, y; \omega) = c(y, x; \omega)$ for all $x, y \in \mathbb{R}^d$.

• Non-local Dirichlet form:

$$
\mathcal{E}^{\omega}(f,g) = -\int f(x)L^{\omega}g(x) dx
$$

= $\frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} dx dy$

on $L^2(\mathbb{R}^d; dx)$.

 \bullet

Non-local symmetric Dirichlet form: starting point

A little more general, allowing the degenerate reference measure:

$$
\mathcal{E}^{\omega}(f,g) := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{c(x, y; \omega)}{|x - y|^{d + \alpha}} dx dy
$$

on $L^2(\mathbb{R}^d; \mu(x; \omega) dx)$.

The corresponding operator on $L^2(\mathbb{R}^d; \mu(x; \omega) dx)$:

$$
L^{\omega}f(x) = \frac{1}{\mu(x;\omega)} \int_{\mathbb{R}^d} (f(y) - f(x)) \, \frac{c(x,y;\omega)}{|x - y|^{d + \alpha}} \, dy.
$$

Translation invariance of coefficients: $c(x + z, y + z; \omega) = c(x, y; \tau, \omega)$. \bullet $\mu(x+z;\omega) = \mu(x;\tau_z\omega).$

Scaling processes

For any
$$
\varepsilon > 0
$$
, set $X^{\varepsilon,\omega} = (X_t^{\varepsilon,\omega})_{t \geq 0} := (\varepsilon X_{\varepsilon^{-\alpha}t}^{\omega})_{t \geq 0}$.

Lemma

The process $X^{\varepsilon,\omega}$ *enjoys a symmetric measure* $\mu^{\varepsilon,\omega}(dx) = \mu(\frac{x}{\varepsilon})$ $(\frac{x}{\varepsilon}; \omega)$ dx, and the *associated regular Dirichlet form* (E ε,ω , F ε,ω) *on L*² (R *d* ; µ ε,ω(*dx*)) *is given by*

$$
\mathcal{E}^{\varepsilon,\omega}(f,g)=\frac{1}{2}\iint (f(x)-f(y))(g(x)-g(y))\frac{c(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega)}{|x-y|^{d+\alpha}}\,dx\,dy.
$$

Limiting Dirichlet form:

$$
\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x - y)}{|x - y|^{d + \alpha}} dx dy,
$$

where $\bar{k}(z) = \bar{k}(-z)$ for all $z \in \mathbb{R}^d$.

Scaling processes

For any
$$
\varepsilon > 0
$$
, set $X^{\varepsilon,\omega} = (X_t^{\varepsilon,\omega})_{t \geq 0} := (\varepsilon X_{\varepsilon^{-\alpha}t}^{\omega})_{t \geq 0}$.

Lemma

The process $X^{\varepsilon,\omega}$ *enjoys a symmetric measure* $\mu^{\varepsilon,\omega}(dx) = \mu(\frac{x}{\varepsilon})$ $(\frac{x}{\varepsilon}; \omega)$ dx, and the *associated regular Dirichlet form* (E ε,ω , F ε,ω) *on L*² (R *d* ; µ ε,ω(*dx*)) *is given by*

$$
\mathcal{E}^{\varepsilon,\omega}(f,g)=\frac{1}{2}\iint (f(x)-f(y))(g(x)-g(y))\frac{c(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega)}{|x-y|^{d+\alpha}}\,dx\,dy.
$$

Limiting Dirichlet form:

$$
\bar{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(y) - f(x))(g(y) - g(x)) \frac{\bar{k}(x - y)}{|x - y|^{d + \alpha}} dx dy,
$$

where $\bar{k}(z) = \bar{k}(-z)$ for all $z \in \mathbb{R}^d$.

• Assumption $(A-\mu)$ Suppose $\mathbb{E} \mu(0;\omega) = 1$.

$$
\int f(x)\mu(x/\varepsilon;\omega) dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega) dx
$$

$$
\to \int f(x)\mathbb{E}\mu(0;\omega) dx = \int f(x) dx.
$$

a. What we need is

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)\dashrightarrow \bar{k}(x-y),\quad \varepsilon\to 0.
$$

Difficulty \bullet

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)=c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\longrightarrow \bar{k}(x-y)???, \quad \varepsilon\to 0.
$$

Difficulty The jumping kernel is not L^2 integrable, not easy to construct \bullet corrector. Box 4 B QQ

4 F + 4 F + 4

 \bullet Assumption $(A-\mu)$ Suppose $\mathbb{E} \mu(0;\omega) = 1$.

$$
\int f(x)\mu(x/\varepsilon;\omega) dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega) dx
$$

$$
\to \int f(x)\mathbb{E}\mu(0;\omega) dx = \int f(x) dx.
$$

• What we need is

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)\dashrightarrow \bar{k}(x-y),\quad \varepsilon\to 0.
$$

Difficulty \bullet

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)=c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\longrightarrow \bar{k}(x-y)???, \quad \varepsilon\to 0.
$$

Difficulty The jumping kernel is not L^2 integrable, not easy to construct \bullet corrector. QQ

4 F + 4 F + 4

 \bullet Assumption $(A-\mu)$ Suppose $\mathbb{E} \mu(0;\omega) = 1$.

$$
\int f(x)\mu(x/\varepsilon;\omega) dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega) dx
$$

$$
\to \int f(x)\mathbb{E}\mu(0;\omega) dx = \int f(x) dx.
$$

• What we need is

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)\dashrightarrow \bar{k}(x-y),\quad \varepsilon\to 0.
$$

Difficulty \bullet

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)=c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\longrightarrow \bar{k}(x-y)???, \quad \varepsilon\to 0.
$$

Difficulty The jumping kernel is not L^2 integrable, not easy to construct \bullet corrector. QQ

∢ ロ ▶ ∢ 伊 ▶ ∢

• Assumption $(A-\mu)$ Suppose $\mathbb{E} \mu(0;\omega) = 1$.

$$
\int f(x)\mu(x/\varepsilon;\omega) dx = \int f(x)\mu(0;\tau_{x/\varepsilon}\omega) dx
$$

$$
\to \int f(x)\mathbb{E}\mu(0;\omega) dx = \int f(x) dx.
$$

• What we need is

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)\dashrightarrow \bar{k}(x-y),\quad \varepsilon\to 0.
$$

Difficulty \bullet

$$
c\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon};\omega\right)=c\left(0,\frac{y-x}{\varepsilon};\tau_{\frac{x}{\varepsilon}}\omega\right)\longrightarrow \bar{k}(x-y)???, \quad \varepsilon\to 0.
$$

 $\mathbb{E}c(0, z/\varepsilon; \omega)$? or $c(0, z/\varepsilon; \omega)$?

Difficulty The jumping kernel is not L^2 integrable, not easy to construct \bullet corrector. QQ

 $+$ \Box \rightarrow $+$ \Box \rightarrow

Known results

- [Z.Q. Chen, P. Kim and T.Kumagai 2013] Homogenization for random conductance model on \mathbb{Z}^d with mutually independent conductance.
- [M. Kassmann, A. Piatnitski and E. Zhizhina 2018] If $c(x, y; \omega) = \sigma_1(x; \omega) \sigma_1(y; \omega) = \sigma_1(0; \tau_x \omega) \sigma_1(0; \tau_y \omega),$ $0 < K_1 \leqslant c(x, y; \omega) \leqslant K_2$ and $\mu(x; \omega) = \frac{\sigma_2(0; \tau_x \omega)}{\sigma_1(0; \tau_x \omega)}$, then for a.s. $\omega \in \Omega$ and $f \in C_c^2(\mathbb{R}^d)$,

$$
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} |U^{\varepsilon,\omega}_{\lambda} f(x) - \bar{U}_{\lambda} f(x)|^2 dx = 0,
$$

where $\bar{U}_{\lambda}f$ is the resolvent associated with

$$
\overline{\mathcal{E}}(f,g) = \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} (f(x) - f(y))(g(x) - g(y)) \frac{(\mathbb{E}[\sigma_1(0; \omega)])^2}{|x - y|^{d + \alpha}} dx dy
$$

- \bullet [X. Chen, T.Kumagai and J. Wang 2018] Quenched invariance principle (limit of process with initial point fixed), large scale parabolic regularity for symmetric stable-like process on random conductance model on \mathbb{Z}^d with mutually independent conductance.
- [X. Chen, T.Kumagai and J. Wang 2018] Large time heat kernel estimates

$$
C_1(t^{-d/\alpha}\wedge \frac{t}{|x-y|^{d+\alpha}})\leqslant p^{\omega}(t,x,y)\leqslant C_2(t^{-d/\alpha}\wedge \frac{t}{|x-y|^{d+\alpha}}),
$$

$$
\forall t>(R_x(\omega)\vee |x-y|)^{\theta}
$$

Question:

- What is the case for the $c(x, y; \omega)$ with more general form? Under this case, what is the expression for $\overline{\mathcal{E}}$?
- Could we prove the result without uniform ellipticity condition $0 < K_1 \leqslant c(x, y; \omega) \leqslant K_2 < \infty$?

[Aim](#page-2-0)

² [Symmetric setting: ergodic medium](#page-20-0)

- [Framework: Dirichlet form](#page-20-0)
- [Main results](#page-34-0)

³ [Non-symmetric case: periodic coefficient](#page-43-0)

- [Framework: operator](#page-43-0)
- • [Main result](#page-54-0)

Assumptions on the coefficient $c(x, y; \omega)$

(Form-1): There exists a measurable function $k : \mathbb{R}^d \times \Omega \to [0, \infty)$ such that

•
$$
c(x, y; \omega) = k(y - x; \tau_x \omega) + k(x - y; \tau_y \omega),
$$

$$
\sup_{z\in\mathbb{R}^d}\mathbb{E}k(z;\cdot)^2<\infty,
$$

There are constants *l* > *d* and C_0 > 0 so that for any z_1 , z_2 and $x \in \mathbb{R}^d$, $\mathbb{E}\big(k(z_1;\cdot)k(z_2;\tau_x\cdot)\big)-\mathbb{E}k(z_1;\cdot)\cdot\mathbb{E}k(z_2;\cdot)\Big|$ $\leqslant C_0 ||k(z_1; \cdot)||_{L^2(\Omega; \mathbb{P})} ||k(z_2; \cdot)||_{L^2(\Omega; \mathbb{P})} \left(1 \wedge |x|^{-l}\right),$

> $\lim_{\varepsilon\to 0}\sup_{|z|<\varepsilon}$ $|z|\bar{\leqslant}r$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\mathbb{E} c\left(0, \frac{z}{z}\right)$ $\left|\frac{z}{\varepsilon}$; $\omega\right) - K(z)\right| = 0, \quad r > 0,$

for a function $K(z)$ satisfying $0 < K_1 \leq K(z) \leq K_2 < \infty$ $0 < K_1 \leq K(z) \leq K_2 < \infty$ $0 < K_1 \leq K(z) \leq K_2 < \infty$.

 \bullet

 \bullet

nar

(Form-2) : There exists a measurable function $k : \mathbb{R}^d \times \Omega \to [0, \infty)$ such that $c(x, y; \omega) = k(y - x; \tau_x \omega) + k(x - y; \tau_y \omega)$, and for a.s. $\omega \in \Omega$ and $r > 0$,

$$
\lim_{\varepsilon\to 0}\sup_{|x|\leq r,|z|\leq r}\left|k\left(\frac{x}{\varepsilon};\tau_{\frac{z}{\varepsilon}}\omega\right)-\bar{k}(x;\tau_{\frac{z}{\varepsilon}}\omega)\right|=0,
$$

where \bar{k} is a measurable function such that the function $0 < C_1 \le \mathbb{E} \overline{k}(z; \cdot) \le C_2 < \infty$ for some positive constants C_1, C_2 .

- (Form-2) includes the scaling invariant condition $k(z; \omega) = k \left(\frac{z}{z}\right)$ $\frac{z}{\varepsilon};\omega\big)$ adopted in [Schwab 2014].
- Another model: $k(z; \omega)$ is periodic with respect to *z*.

(Bound-1) There are nonnegative random variables $\Lambda_1(\omega) \leq \Lambda_2(\omega)$ such that for a.s. $\omega \in \Omega$ and $x, y \in \mathbb{R}^d$,

 $\Lambda_1(\tau_x\omega) + \Lambda_1(\tau_y\omega) \leq c(x, y; \omega) \leq \Lambda_2(\tau_x\omega) + \Lambda_2(\tau_y\omega),$

and for some $p > 1$, $q > 1$,

 $\mathbb{E}(\Lambda_1^{-q}$ $\binom{-q}{1} + \Lambda_2^p(\cdot) + \mu^p(0;\cdot) < \infty.$

(Bound-2) There are nonnegative random variables $\Lambda_1(\omega) \leq \Lambda_2(\omega)$ such that for a.s. $\omega \in \Omega$.

 $\Lambda_1(\tau_x\omega)\Lambda_1(\tau_y\omega) \leqslant c(x,y;\omega) \leqslant \Lambda_2(\tau_x\omega)\Lambda_2(\tau_y\omega), \quad x,y \in \mathbb{R}^d,$

and

$$
\mathbb{E}\big(\Lambda_1^{-q}(\cdot)+\Lambda_2^p(\cdot)+\mu^{p/2}(0;\cdot)\big)<\infty
$$

for some constants $p > 2$ and $q > 2$.

Theorem

Suppose that (Form-1) *and* (Bound-1) *hold. Then, for a.s.* $\omega \in \Omega$ *, any* $f \in C_c^{\infty}(\mathbb{R}^d)$ and $\lambda > 0$,

$$
\lim_{\varepsilon\to 0}\int_{\mathbb{R}^d}|U^{\varepsilon,\omega}_{\lambda}f(x)-\bar{U}_{\lambda}f(x)|^2\mu(\frac{x}{\varepsilon};\omega)dx=0,
$$

where $\bar{U}\chi f$ is the resolvent associated with

$$
\overline{\mathcal{E}}(f,g)=\frac{1}{2}\iint (f(x)-f(y))(g(x)-g(y))\frac{K(x-y)+K(y-x)}{|x-y|^{d+\alpha}}\,dx\,dy.
$$

Mosco convergence with changing measures ([Kuwae-Shioya 2003], [Kolesnikov 2005]):

For every sequence $\{f_n\}_{n\geq 1}$ on $L^2(\mathbb{R}^d; \mu_{\varepsilon_n}(dx))$ converging weakly $\text{to } f \in L^2(\mathbb{R}^d; dx),$

$$
\liminf_{n\to\infty}\mathcal{E}^{\varepsilon_n,\omega}(f_n,f_n)\geqslant\overline{\mathcal{E}}(f,f).
$$

For any $f \in L^2(\mathbb{R}^d; dx)$, there is $\{f_n\}_{\geq 1} \subset L^2(\mathbb{R}^d; \mu_{\varepsilon_n}(dx))$ converging strongly to *f* such that

$$
\limsup_{n\to\infty} \mathcal{E}^{\varepsilon_n,\omega}(f_n,f_n)\leqslant \overline{\mathcal{E}}(f,f).
$$

Theorem

Suppose that (Form-2) *and* (Bound-1) *hold. Then, for a.s.* $\omega \in \Omega$ *, any* $f \in C_c^{\infty}(\mathbb{R}^d)$ and $\lambda > 0$,

$$
\lim_{\varepsilon\to 0}\int_{\mathbb{R}^d}|U^{\varepsilon,\omega}_{\lambda}f(x)-\bar{U}_{\lambda}f(x)|^2\mu(\frac{x}{\varepsilon};\omega)dx=0,
$$

where $\bar{U}\chi f$ is the resolvent associated with

$$
\overline{\mathcal{E}}(f,g) = \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \frac{\mathbb{E}[\overline{k}(x-y) + \overline{k}(y-x)]}{|x-y|^{d+\alpha}} dx dy.
$$

 \leftarrow \Box

Theorem

Suppose that $c(x, y; \omega) = \sigma_1(0; \tau_x \omega) \sigma_1(0; \tau_y \omega)$, $\mu(x; \omega) = \frac{\sigma_2(0; \tau_x \omega)}{\sigma_1(0; \tau_x \omega)}$ and **(Bound-2)** *hold. Then, for a.s.* $\omega \in \Omega$ *, any* $f \in C_c^{\infty}(\mathbb{R}^d)$ *and* $\lambda > 0$ *,*

$$
\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} |U^{\varepsilon,\omega}_{\lambda} f(x) - \bar{U}_{\lambda} f(x)|^2 \mu\left(\frac{x}{\varepsilon}; \omega\right) dx = 0,
$$

where $\bar{U}\chi f$ is the resolvent associated with

$$
\overline{\mathcal{E}}(f,g)=\frac{1}{2}\iint (f(x)-f(y))(g(x)-g(y))\frac{\mathbb{E}[\sigma_1(\omega)]^2}{|x-y|^{d+\alpha}}\,dx\,dy.
$$

[Aim](#page-2-0)

² [Symmetric setting: ergodic medium](#page-20-0)

- [Framework: Dirichlet form](#page-20-0)
- • [Main results](#page-34-0)

³ [Non-symmetric case: periodic coefficient](#page-43-0) [Framework: operator](#page-43-0) • [Main result](#page-54-0)

Non-symmetric setting

Let $\alpha \in (0, 1)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$
Lf(x) = \int_{\mathbb{R}^d} (f(y) - f(x)) \frac{c(x, y)}{|x - y|^{d + \alpha}} dy
$$

=
$$
\int_{\mathbb{R}^d} (f(y) - f(x)) \frac{k(x, z)}{|z|^{d + \alpha}} dz.
$$

(Note that, $c(x, y)$ *is not symmetric with respect to* (x, y) *and* $k(x, z) = c(x, x + z)$.

Coefficients: Let $c(x, y) : \mathbb{R}^d \times \mathbb{R}^d \to (0, \infty)$ be periodic with respect to both variables such that

(i)
$$
0 < C_1 \leq c(x, y) \leq C_2 < \infty
$$
 for all $x, y \in \mathbb{R}^d$.
\n(ii) $k(\cdot, \cdot) \in C_b^{2,1}(\mathbb{R}^d \times \mathbb{R}^d)$.

• Let $(X_t)_{\geq 0}$ be the process associated with *L*.

[M. Kassmann, A. Piatnitski and E. Zhizhina 2018] If $\alpha \in (0, 1)$, then $\epsilon X_{\epsilon-\alpha} \to \bar{X}$ with corresponding infinitesimal generator

$$
\bar{L}f(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \, \frac{\bar{k}}{|z|^{d+\alpha}} dz,
$$

where $\bar{k} = \int \int_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) dz \bar{\mu}(dy)$ with $\bar{\mu}$ being the invariant measure for $(X_t)_{t\geq 0}$.

• Question: What is the case for $\alpha \in [1, 2)$.

Settings: periodic homogenization

Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$
Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,
$$

where

$$
b_0(x) := \frac{1}{2} \int z \, \frac{(k(x, z) - k(x, -z))}{|z|^{d+\alpha}} \, dz, \quad x \in \mathbb{R}^d.
$$

Settings: periodic homogenization

Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$
Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,
$$

where

$$
b_0(x) := \frac{1}{2} \int z \, \frac{(k(x, z) - k(x, -z))}{|z|^{d+\alpha}} \, dz, \quad x \in \mathbb{R}^d.
$$

(Note that, here we do not require that $k(x, z) = k(x, -z)$ *for all* $x, z \in \mathbb{R}^d$.)

Settings: periodic homogenization

Let $\alpha \in (1, 2)$. Consider the following operator acting on $C_b^2(\mathbb{R}^d)$:

$$
Lf(x) = p.v. \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle,
$$

where

$$
b_0(x) := \frac{1}{2} \int z \, \frac{(k(x, z) - k(x, -z))}{|z|^{d+\alpha}} \, dz, \quad x \in \mathbb{R}^d.
$$

(Note that, here we do not require that $k(x, z) = k(x, -z)$ *for all* $x, z \in \mathbb{R}^d$.)

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.
$$

We need the continuity of *z* to ensure the regularity of b_0 .

 \bullet

$$
Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b(x) \rangle.
$$

- **•** There exists a non-symmetric α -stable-like process $X := (X_t)_{t \geq 0}$, see Chen-Zhang (14',18').
- To es[t](#page-49-0)ablish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ [.](#page-42-0)

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

 \bullet

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.
$$

We need the continuity of *z* to ensure the regularity of b_0 .

$$
Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b(x) \rangle.
$$

(Note that, for this the continuity of k(*x*,*z*) *with respect to z is not required. We only need to assume that b is bounded.)*

- **•** There exists a non-symmetric α -stable-like process $X := (X_t)_{t \geq 0}$, see Chen-Zhang (14',18').
- To es[t](#page-49-0)ablish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ [.](#page-42-0)

Non-symmetric α -stable-like processes

• Let $\alpha \in (1, 2)$.

 \bullet

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.
$$

We need the continuity of *z* to ensure the regularity of b_0 .

$$
Lf(x) = \int_{\mathbb{R}^d} \left(f(x+z) - f(x) - \langle \nabla f(x), z \rangle \right) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b(x) \rangle.
$$

(Note that, for this the continuity of k(*x*,*z*) *with respect to z is not required. We only need to assume that b is bounded.)*

- **•** There exists a non-symmetric α -stable-like process $X := (X_t)_{t \geq 0}$, see Chen-Zhang (14',18').
- To es[t](#page-49-0)ablish the limit of the scaling process $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ $(\varepsilon X_{\varepsilon^{-\alpha}t})_{t\geq 0}$ [.](#page-42-0)

• Let $\alpha = 1$.

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{|z| \le \frac{1}{\varepsilon}} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0^{\varepsilon}(x) \rangle,
$$

where $b_0^{\varepsilon}(x) = \frac{1}{2} \int_{|z| \le \frac{1}{\varepsilon}} z^{\frac{k(x,z) - k(x,-z)}{|z|^{d+\alpha}}}$ $\frac{|z|^{d+\alpha}}{|z|^{d+\alpha}}dz.$

4 0 8

 $2Q$

• Let $\alpha = 1$.

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \frac{k(x,z)}{|z|^{d+\alpha}} dz
$$

=
$$
\int_{|z| \le \frac{1}{\varepsilon}} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0^{\varepsilon}(x) \rangle,
$$

where $b_0^{\varepsilon}(x) = \frac{1}{2} \int_{|z| \le \frac{1}{\varepsilon}} z^{\frac{k(x,z) - k(x,-z)}{|z|^{d+\alpha}}}$ $\frac{|z|^{d+\alpha}}{|z|^{d+\alpha}}dz.$

4 0 8

 $2Q$

[Aim](#page-2-0)

² [Symmetric setting: ergodic medium](#page-20-0)

- [Framework: Dirichlet form](#page-20-0)
- [Main results](#page-34-0)

³ [Non-symmetric case: periodic coefficient](#page-43-0)

- [Framework: operator](#page-43-0)
- • [Main result](#page-54-0)

Theorem

If $\alpha \in (1,2)$, there exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process* $\{\varepsilon (X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geqslant0}$ converges, as $\varepsilon\to0$, in the Skorokhod *topology to a rotationally invariant* α -stable Lévy process \bar{X} with the *generator*

$$
\bar{L}f(x) = \int (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{\bar{k}_0}{|z|^{d+\alpha}} dz.
$$

Additionally, when $b_0(x) \equiv 0$ for all $x \in \mathbb{R}^d$ (in particular, in balanced case: $k(x, z) = k(x, -z)$ for all $x, z \in \mathbb{R}^d$), then $\bar{b}_0 = 0$.

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.
$$

$$
b_0(x) := \frac{1}{2} \int z \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} dz, \quad x \in \mathbb{R}^d.
$$

Theorem

If $\alpha \in (1,2)$, there exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process* $\{\varepsilon (X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geqslant0}$ converges, as $\varepsilon\to0$, in the Skorokhod $topology$ *to a rotationally invariant* α -stable Lévy process X with the *generator*

$$
\bar{L}f(x) = \int (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{\bar{k}_0}{|z|^{d+\alpha}} dz.
$$

Additionally, when $b_0(x) \equiv 0$ for all $x \in \mathbb{R}^d$ (in particular, in balanced case: $k(x, z) = k(x, -z)$ *for all* $x, z \in \mathbb{R}^d$ *), then* $\bar{b}_0 = 0$ *.*

$$
Lf(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x) - \langle \nabla f(x), z \rangle) \frac{k(x,z)}{|z|^{d+\alpha}} dz + \langle \nabla f(x), b_0(x) \rangle.
$$

$$
b_0(x) := \frac{1}{2} \int z \frac{(k(x,z) - k(x,-z))}{|z|^{d+\alpha}} dz, \quad x \in \mathbb{R}^d.
$$

Theorem

If $\alpha \in (1,2)$, there exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process*

$$
\{\varepsilon (X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}
$$

converges, as $\varepsilon \to 0$ *, in the Skorokhod topology to a rotationally invariant* α -stable Lévy process \bar{X} with Lévy measure $\frac{k_0}{|z|^{d-1}}$ $rac{\kappa_0}{|z|^{d+\alpha}} dz$.

Let $X^{\mathbb{T}^d}$ be the projection of the process *X* from \mathbb{R}^d to $\mathbb{T}^d := (\mathbb{R}/\mathbb{Z})^d$. Then, $X^{\mathbb{T}^d}$ has a unique invariable probability measure $\bar{\mu}(dx)$. Moreover,

$$
\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \, \bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \, \bar{\mu}(dy).
$$

• Central limit theorem for stable laws. Non-central limit theorem when $\alpha \in (1,2).$

Theorem

If $\alpha \in (1,2)$, there exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process*

$$
\{\varepsilon (X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}
$$

converges, as $\varepsilon \to 0$ *, in the Skorokhod topology to a rotationally invariant* α -stable Lévy process \bar{X} with Lévy measure $\frac{k_0}{|z|^{d-1}}$ $rac{\kappa_0}{|z|^{d+\alpha}} dz$.

Let $X^{\mathbb{T}^d}$ be the projection of the process *X* from \mathbb{R}^d to $\mathbb{T}^d := (\mathbb{R}/\mathbb{Z})^d$. Then, $X^{\mathbb{T}^d}$ has a unique invariable probability measure $\bar{\mu}(dx)$. Moreover,

$$
\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \, \bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \, \bar{\mu}(dy).
$$

• Central limit theorem for stable laws. Non-central limit theorem when $\alpha \in (1,2)$.

Theorem

If $\alpha \in (1,2)$, there exist a vector $\bar{b}_0 \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process*

$$
\{\varepsilon (X_{\varepsilon^{-\alpha}t}-\varepsilon^{-\alpha}\bar{b}_0t)\}_{t\geq 0}
$$

converges, as $\varepsilon \to 0$ *, in the Skorokhod topology to a rotationally invariant* α -stable Lévy process \bar{X} with Lévy measure $\frac{k_0}{|z|^{d-1}}$ $rac{\kappa_0}{|z|^{d+\alpha}} dz$.

Let $X^{\mathbb{T}^d}$ be the projection of the process *X* from \mathbb{R}^d to $\mathbb{T}^d := (\mathbb{R}/\mathbb{Z})^d$. Then, $X^{\mathbb{T}^d}$ has a unique invariable probability measure $\bar{\mu}(dx)$. Moreover,

$$
\bar{b}_0 = \int_{\mathbb{T}^d} b_0(x) \,\bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \,\bar{\mu}(dy).
$$

• Central limit theorem for stable laws. Non-central limit theorem when $\alpha \in (1,2).$

Theorem

 \bullet

If $\alpha = 1$, there exist a vector $\bar{b}_0^{\varepsilon} \in \mathbb{R}^d$ and a constant $\bar{k}_0 > 0$ such that the *process*

 $\{\varepsilon X_{\varepsilon^{-1} t} - \bar{b}_0^{\varepsilon} t)\}_{t \geqslant 0}$

converges, as $\varepsilon \to 0$ *, in the Skorokhod topology to a rotationally invariant* α -stable Lévy process \bar{X} with Lévy measure $\frac{K_0}{|z|d}$ $rac{\kappa_0}{|z|^{d+1}} dz$.

$$
\bar{b}_0^{\varepsilon} = \int_{\mathbb{T}^d} b_0^{\varepsilon}(x) \, \bar{\mu}(dx), \quad \bar{k}_0 = \iint_{\mathbb{T}^d \times \mathbb{T}^d} k(y, z) \, dz \, \bar{\mu}(dy).
$$

If $\bar{b}_0^{\varepsilon} \to \bar{b}_0$ as $\varepsilon \to 0$, then $\varepsilon X_{\varepsilon^{-1}} \to \bar{X}$ with corresponding infinitesimal generator

$$
\bar{L}f(x) = \int_{\mathbb{R}^d} (f(x+z) - f(x)) \, \frac{\bar{k}_0}{|z|^{d+1}} dz + \langle \nabla f(x), \bar{b}_0 \rangle.
$$

Thank you for your attention!

 \leftarrow \Box \mathcal{A} $2Q$